Computing Node Polynomials for Plane Curves
نویسندگان
چکیده
منابع مشابه
Computing Node Polynomials for Plane Curves
According to the Göttsche conjecture (now a theorem), the degree N of the Severi variety of plane curves of degree d with δ nodes is given by a polynomial in d, provided d is large enough. These “node polynomials” Nδ(d) were determined by Vainsencher and Kleiman–Piene for δ ≤ 6 and δ ≤ 8, respectively. Building on ideas of Fomin and Mikhalkin, we develop an explicit algorithm for computing all ...
متن کاملRelative node polynomials for plane curves
We generalize the recent work of S. Fomin and G. Mikhalkin on polynomial formulas for Severi degrees. The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d , provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves that, in addition, satisfy tangency conditions of given orders wit...
متن کاملComputing singular points of plane rational curves
We compute the singular points of a plane rational curve, parametrically given, using the implicitization matrix derived from the μ-basis of the curve. It is shown that singularity factors, which are defined and uniquely determined by the elementary divisors of the implicitization matrix, contain all the information about the singular points, such as the parameter values of the singular points ...
متن کاملq-Floor Diagrams computing Refined Severi Degrees for Plane Curves
The Severi degree is the degree of the Severi variety parametrizing plane curves of degree d with δ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable q, which are conjecturally equal, for large d. At q = 1, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a combinatorial description ...
متن کاملA SURVEY ON ALEXANDER POLYNOMIALS OF PLANE CURVES by
— In this paper, we give a brief survey on the fundamental group of the complement of a plane curve and its Alexander polynomial. We also introduce the notion of θ-Alexander polynomials and discuss their basic properties. Résumé (Un état des lieux sur les polynômes d’Alexander des courbes planes) Dans cet article, nous donnons un bref état des lieux sur le groupe fondamental du complémentaire d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2011
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2011.v18.n4.a4